Exact maximum likelihood estimation of partially nonstationary vector ARMA models

نویسنده

  • José Alberto Mauricio
چکیده

A useful class of partially nonstationary vector autoregressive moving average (VARMA) models is considered with regard to parameter estimation. An exact maximum likelihood (EML) approach is developed on the basis of a simple transformation applied to the error-correction representation of the models considered. The employed transformation is shown to provide a standard VARMA model with the important property that it is stationary. Parameter estimation can thus be carried out by applying standard EML methods to the stationary VARMA model obtained from the error-correction representation. This approach resolves at least two problems related to the current limited availability of EML estimation methods for partially nonstationary VARMA models. Firstly, it resolves the apparent impossibility of computing the exact log-likelihood for such models using currently available methods. And secondly, it resolves the inadequacy of considering lagged endogenous variables as exogenous variables in the error-correction representation. Theoretical discussion is followed by an example using a popular data set. The example illustrates the feasibility of the EML estimation approach as well as some of its potential benefits in cases of practical interest which are easy to come across. As in the case of stationary models, the proposed EML method provides estimated model structures that are more reliable and accurate than results produced by conditional methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Identification and Estimation of Partially Nonstationary ARMAX Systems

This paper extends current theory on the identification and estimation of vector time series models to nonstationary processes. It examines the structure of dynamic simultaneous equations systems or ARMAX processes that start from a given set of initial conditions and evolve over a given, possibly infinite, future time horizon. The analysis proceeds by deriving the echelon canonical form for su...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Maximum likelihood estimation of the parameters of nonminimum phase and noncausal ARMA models

The well-known prediction-error-based maximum likelihood (PEML) method can only handle minimum phase ARMA models. This likelihood (BFML) method, which can handle nonminimum phase and noncausal ARMA models. The BFML method is identical to the PEML method in the case of a minimum phase ARMA model, and it turns out that the BFML method incorporates a noncausal ARMA filter with poles outside the un...

متن کامل

Dissertation Time - Frequency - Autoregressive - Moving - Average Modeling of Nonstationary Processes

This thesis introduces time-frequency-autoregressive-moving-average (TFARMA) models for underspread nonstationary stochastic processes (i.e., nonstationary processes with rapidly decaying TF correlations). TFARMAmodels are parsimonious as well as physically intuitive and meaningful because they are formulated in terms of time shifts (delays) and Doppler frequency shifts. They are a subclass of ...

متن کامل

Faster ARMA maximum likelihood estimation

A new likelihood based AR approximation is given for ARMA models. The usual algorithms for the computation of the likelihood of an ARMA model require O(n) flops per function evaluation. Using our new approximation, an algorithm is developed which requires only O(1) flops in repeated likelihood evaluations. In most cases, the new algorithm gives results identical to or very close to the exact ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006